## Exercise 11

Graph the particular solution and several other solutions. What characteristics do these solutions have in common?

$$
y^{\prime \prime}+3 y^{\prime}+2 y=\cos x
$$

## Solution

Since the ODE is linear, the general solution can be written as the sum of a complementary solution and a particular solution.

$$
y=y_{c}+y_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
y_{c}^{\prime \prime}+3 y_{c}^{\prime}+2 y_{c}=0 \tag{1}
\end{equation*}
$$

This is a linear homogeneous ODE, so its solutions are of the form $y_{c}=e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad y_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad y_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into equation (1).

$$
r^{2} e^{r x}+3\left(r e^{r x}\right)+2\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}+3 r+2=0
$$

Solve for $r$.

$$
\begin{gathered}
(r+2)(r+1)=0 \\
r=\{-2,-1\}
\end{gathered}
$$

Two solutions to the ODE are $e^{-2 x}$ and $e^{-x}$. By the principle of superposition, then,

$$
y_{c}(x)=C_{1} e^{-2 x}+C_{2} e^{-x} .
$$

On the other hand, the particular solution satisfies the original ODE.

$$
\begin{equation*}
y_{p}^{\prime \prime}+3 y_{p}^{\prime}+2 y_{p}=\cos x \tag{2}
\end{equation*}
$$

Since the inhomogeneous term is a cosine function, the particular solution is $y_{p}=A \cos x+B \sin x$.

$$
y_{p}=A \cos x+B \sin x \quad \rightarrow \quad y_{p}^{\prime}=-A \sin x+B \cos x \quad \rightarrow \quad y_{p}^{\prime \prime}=-A \cos x-B \sin x
$$

Substitute these formulas into equation (2).

$$
\begin{gathered}
(-A \cos x-B \sin x)+3(-A \sin x+B \cos x)+2(A \cos x+B \sin x)=\cos x \\
(-A+3 B+2 A) \cos x+(-B-3 A+2 B) \sin x=\cos x
\end{gathered}
$$

Match the coefficients on both sides to get a system of equations for $A$ and $B$.

$$
\left.\begin{array}{l}
-A+3 B+2 A=1 \\
-B-3 A+2 B=0
\end{array}\right\}
$$

Solving it yields

$$
A=\frac{1}{10} \quad \text { and } \quad B=\frac{3}{10},
$$

which means the particular solution is

$$
y_{p}=\frac{1}{10} \cos x+\frac{3}{10} \sin x .
$$

Therefore, the general solution to the ODE is

$$
\begin{aligned}
y(x) & =y_{c}+y_{p} \\
& =C_{1} e^{-2 x}+C_{2} e^{-x}+\frac{1}{10} \cos x+\frac{3}{10} \sin x,
\end{aligned}
$$

where $C_{1}$ and $C_{2}$ are arbitrary constants. Below is a graph of the two exponential functions and the particular solution.


As $x \rightarrow \infty$, all solutions tend to $(1 / 10) \cos x+(3 / 10) \sin x$. And as $x \rightarrow-\infty, y(x)$ blows up to infinity unless $C_{1}=C_{2}=0$.

